The Regulation of Uncoupling Protein-2 Gene Expression by v-6 Polyunsaturated Fatty Acids in Human Skeletal Muscle Cells Involves Multiple Pathways, Including the Nuclear Receptor Peroxisome Proliferator-activated Receptor b*
نویسندگان
چکیده
Fatty acids have been postulated to regulate uncoupling protein (UCP) gene expression in skeletal muscle in vivo. We have identified, at least in part, the mechanism by which polyunsaturated fatty acids increase UCP-2 expression in primary culture of human muscle cells. v-6 fatty acids and arachidonic acid induced a 3-fold rise in UCP-2 mRNA levels possibly through transcriptional activation. This effect was prevented by indomethacin and mimicked by prostaglandin (PG) E2 and carbaprostacyclin PGI2, consistent with a cyclooxygenase-mediated process. Incubation of myotubes for 6 h with 100 mM arachidonic acid resulted in a 150-fold increase in PGE2 and a 15-fold increase in PGI2 in the culture medium. Consistent with a role of cAMP and protein kinase A, both prostaglandins induced a marked accumulation of cAMP in human myotubes, and forskolin reproduced the effect of arachidonic acid on UCP-2 mRNA expression. Inhibition of protein kinase A with H-89 suppressed the effect of PGE2, whereas cPGI2 and arachidonic acid were still able to increase ucp-2 gene expression, suggesting additional mechanisms. We found, however, that the MAP kinase pathway was not involved. Prostaglandins, particularly PGI2, are potent activators of the peroxisome proliferator-activated receptors. A specific agonist of peroxisome proliferator-activated receptor (PPAR) b (L165041) increased UCP-2 mRNA levels in myotubes, whereas activation of PPARa or PPARg was ineffective. These results suggest thus that ucp-2 gene expression is regulated by v-6 fatty acids in human muscle cells through mechanisms involving at least protein kinase A and the nuclear receptor PPARb.
منابع مشابه
Compare the Effect of Eicosapentaenoic Acid and Oxidized Low-Density Lipoprotein on the Expression of CD36 and Peroxisome Proliferator-Activated Receptor Gamma
Background: There is evidence that CD36 promotes foam cell formation through internalizing oxidized LDL (ox-LDL) into macrophages therefore, it plays a key role in pathogenesis of atherosclerosis. In addition, CD36 expression seems to be mediated by nuclear receptor peroxisome proliferator-activated receptor gamma (PPAR-γ). The aim of the present study was to evaluate and compare the effect of ...
متن کاملConjugated linoleic acid supplementation enhances insulin sensitivity and peroxisome proliferator-activated receptor gamma and glucose transporter type 4 protein expression in the skeletal muscles of rats during endurance exercise
Objective(s):This study examined whether conjugated linoleic acid (CLA) supplementation affects insulin sensitivity and peroxisome proliferator-activated receptor gamma (PPAR-γ) and glucose transporter type 4 (GLUT-4) protein expressions in the skeletal muscles of rats during endurance exercise. Materials and Methods:Sprague-Dawley male rats were randomly divided into HS (high-fat diet (HFD) s...
متن کاملپاسخ متفاوت سلولهای قلبی به اسیدهای چرب اشباع و غیر اشباع
Introduction & Objective: The link between dietary fat and coronary heart disease has attracted much attention since the effect of long?chain fatty acids (LCFA) on gene transcription has been established, which in part, these effects can be explained by the regulation of gene transcription. In this study, the P19CL6 cardiac cell?line was targeted for the investigation of (i) the effects of long...
متن کاملاثرایمونوتراپیوتیک آل- ترانس رتینوئیک اسید بر دیابت تیپ 1 در موش و تاثیر آن بر بیان ژن (peroxisome proliferator- activated receptor gamma (PPARγ
Background: All-trans retinoic acid (ATRA) has a variety of biological activities, including immunomodulatory action in a number of inflammatory and autoimmune diseases. The purpose of this study was to investigate the effects of all-trans retinoic acid on the treatment of autoimmune diabetes in mice and its effects on expressions of Peroxisome Proliferator-Activated Receptor gamma (PPARγ...
متن کاملPeroxisome Proliferator-Activated Receptor and Vitamin D Receptor Signaling Pathways in Cancer Cells
Peroxisome proliferator-activated receptors (PPARs) are members of the superfamily of nuclear hormone receptors, which respond to specific ligands such as polyunsaturated fatty acids by altering gene expression. Three subtypes of this receptor have been discovered, each evolving to achieve different biological functions. Like other nuclear receptors, the transcriptional activity of PPARs is aff...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2001